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Abstract.  We seek to bridge the gap between basic statistical data mining tools and advanced 
statistical analysis software that requires an expert operator.  In this paper, we explore the 
automation of the process of statistical data analysis via model scoring functions and search 
algorithms through the space of statistical models.  In particular, we focus on automated modeling 
using generalized linear statistical models and especially models for categorical data analysis.  By 
automating the process of selecting, building and solving statistical models, a computer can 
compare hundreds or thousands of possible models for a data set and produce a highly accurate 
statistical predictor with essentially no intermediate input from the operator.  One application of 
this process is in expanding the statistical components of data mining packages. 

 
1.0.  Introduction.  Data sets that do not regress well to a linear function of the predictor variables may 
be better fit by regressing to a polynomial whose terms are products of the predictor variables.  In such 
multi-level models, where the response variable is fit to the sum of products of the predictor variables, we 
are able to better model the interactions between variables and arrive at a more accurate predictive model.  
This comes at the price of losing model generality (measured in degrees of freedom) and adding work to 
the computation of the maximum likelihood estimators so that, instead of least squared methods, we must 
use general multivariate optimization methods, such as Newton-Raphson. 
 
Our efforts focus on the family of generalized linear models (GLZs), which generalize the family of 
general linear models (GLMs), which, in turn, generalize linear models.  Roughly speaking, the main idea 
behind GLZs is that there is a random response variable Y and a smooth, differentiable link function E 
such that E(Y) regresses to a polynomial function, g, of the predictor variables.  We will focus our 
attention on cases where g is a multi-level hierarchical function, where summands involve an arbitrary 
product of predictor variables (i.e., terms contain products of predictor variables with exponents of zero or 
one).  The term hierarchical refers to the requirement that a model containing a higher-level interaction 
term must also include all corresponding lower-level interactions.  For example, the existence of the 3-
level interaction term XYZ in a model requires the existence of the terms X, Y, Z, XY, XZ, and YZ.  The 
family of generalized linear models encompasses a great many of the data sets in which we at Wagner 
Associates were interested. 
 
In particular, consider the case where the predictor variables are either naturally categorical (e.g., species, 
gender, professional occupation, nationality, etc.) or may be binned into categories (e.g., age or weight 
brackets).  If the categorical response variable is multinomial, taking one of several discrete values, then 
we may fit our sample data using logistic (a.k.a. logit) regression or using probit regression (perhaps the 
less popular model choice).  If the categorical response variable represents an integer count, where the 
response is assumed to take values drawn from a Poisson distribution, then we may fit the sample data 
using a loglinear model. 
 
Because a great number of predictor variables are naturally categorical, categorical models have a wide 
range of applications, such as in the areas of credit scoring, marketing, behavioral studies, and 
epidemiology (see, for example, Agresti (2002) or Hosmer & Lemeshow).  
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1.1.  Our Efforts.  In this paper, we describe an automated process for determining a preferred multi-
level regression model for a data set.  This process involves an algorithmic search through the space of 
possible models and a scoring function used to establish a complete ordering on all available models.  In 
particular, we focus on the application of our process to some generalized linear models associated with 
categorical data analysis.  That is, we focus on logistic regression and loglinear models.  Basing our 
approach somewhat on forward and backward stepwise methods, we develop an approach which, in 
addition to allowing a great deal of flexibility in model space search algorithms, does not depend on an 
application of the likelihood ratio test statistic to compare nested models. 
 
In our Data Mining Tool Set, we implemented such a process for categorical data analysis, programmed 
in Java and interfaced with data agents that retrieve data from a Sybase database.  The object-oriented 
nature of the Java programming language nicely handles the commonalities shared by generalized linear 
models.  Using this tool set, we were able to take automated statistical data mining to a more advanced 
level and to make more powerful statistical analysis available for use by non-statisticians. 
 

<  Proprietary information removed here pending patent approval  > 
 
4.0.  Testing.  We ran several simulations to test this automated statistical modeling component of our 
Data Mining Tool Set.  In particular, we wanted to see how accurate the tool would be at recovering the 
distribution behind a simulation and also to get some idea as to how many sample events would be 
required in order to build an accurate model from the data set (we measured this in terms of average 
number of sample events per categorical classification). 
 
4.1.  Test Case.  An agency interested in sonar applications is in the process of collecting a database 
indicating situations in which their sonar detected or failed to detect a test object.  Their data includes the 
following likely predictor variables: 

1. the Closest Point of Approach (CPA) of the sonar to the object (binned as 0-10, 10-20, 20-50, 50-
100, 100-150, and 150-200 yards), 

2. the Bottom Type in the area (recorded as type A, B, C, or D), 
3. the Clutter Density in the area (recorded as type 1, 2, or 3), and 
4. the Sound Speed Profile (SSP) of the water (positive indicates that sound speed is increasing with 

depth and negative indicates that sound speed is decreasing with depth). 

The agency performs numerous test runs, recording when their sonar detects or fails to detect the object.  
The number of tests may vary for each categorical classification (representing a different combination of 
the factors) and there may be scenarios for which no tests are run.  They would like to use their limited 
test data to answer the following questions: 

1. Which of the factors most heavily affects the probability of detection? 
2. For any combination of Bottom Type, Clutter, and SSP, what is the probability of detection as a 

function of CPA? 
 
4.2.  Simulation Results.  Because a comprehensive data set was not readily available to us, we ran a 
simulation to test the statistical tool.  We started by constructing a sample probability of detection 
function that we expected would closely resemble real-world probability curves.  The probability of 
detection was considered to be a non-separable function of the four categories in question and is 
illustrated in Figure 1 below.  We then randomly determined the number of test runs for each of the 192 
categorical classifications ((6 CPA bins) × (4 Bottom Types) × (4 Clutter Densities) × (2 SSP profiles)).  
The number of runs per bin was uniformly distributed between 0 and 9. 
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For each event in each categorical classification, we used our sample probability of detection function to 
randomly determine whether the run was successful.  The measured data was then fed to our automated 
statistical modeling software in a simple ASCII format and the module provided a recommendation of the 
logistic regression model that best fit the data set.  The end result was a modeled probability of detection 
curve for each categorical classification (i.e., each operational scenario). 
 
Once our automated tool determined the recommended statistical model, so that we were equipped with 
statistical estimators for all categories of interest, we were interested in plotting the probability of detection as 
a function of closest point of approach (CPA) of the sonar to the submerged object.  For purposes of 
illustration, we will focus on the effects of one particular category, the bottom type in the area of operation.  
Examples of actual bottom types would be sand, pebbles, rocks, etc.  Figure 1 illustrates the true detection 
curves, which formed the basis for our simulation, plotted as a function of CPA and aggregated over the other 
two categories (clutter type and sound speed).  Figure 2 illustrates the same curves when they are constructed 
using the raw simulation results.  Figure 3 illustrates the modeled detection curves, which were produced by 
the automated statistical tool using only the simulated data set.  The curve labeled “All” is the probability of 
detection curve averaged over all bottom types. 

 

 
Figure 1.  Actual Probability of Detection Curves 

for Individual Bottom Types 
(Y-axis indicates probability of detection) 

 

 
Figure 2. Simulated Sample Probability of 

Detection Curves for Individual Bottom Types 
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Figure 3.  Curves from Computer Generated 

Logistic Regression Model  

 

 
Figure 4 presents these three types of curves (actual, sample and modeled) for the specific categorical 
classification Bottom Type C, Clutter Density 3, and Negative SSP, along with the actual simulation 
results.  Note that several CPA bins had no successful sample results, producing a very jagged sample 
curve.  This sparse measured data gives a very poor indication of the true shape of the probability of 
detection curve, but the model built from the measured data using the automated statistical modeling tool 
is very similar to the actual probability of detection curve. 
 

 

 
 
 
 

Measured Data for this Scenario

CPA (yds) 
0-10 

10-20 
20-50 
50-100 

100-150 
150-200

Successes  
4 
0 
1 
0 
0 
0

Failures 
2 
1 
3 
4 
9 
7

 
Figure 4.  Probability Curves for Bottom Type C, Clutter Density 3, Negative SSP 

 
 
4.3.  Analysis.  Although this automated process lacks the careful statistical analysis that an experienced 
statistician could bring to bear, it has the advantage, as a data mining tool, of providing an automated 
functionality which requires only that the raw data be entered in a standard ASCII format.  To this end we 
have incorporated a set of data agents capable of querying a Sybase database and assembling the required 
input files for the automated statistical tool, the result being a fully automated statistical data mining 
system. 
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Once the system has produced the model, it is a straightforward process to use the model estimates to 
construct additional information that would be of use to an analyst.  In our application, for example, one 
thing that we do is to automatically check for instances of Simpson's Paradox.  In addition, we analyze the 
modeled variance across categorical classifications and present the analyst with a ranking of which 
categories seem to most significantly affect the dependent variable.  The analyst can use this ranking as a 
basis on which to view aggregated data (as in Figures 1-3). 
 
4.4.  Data Requirements.  In order to get a better idea of the amount of measured data needed to produce 
a good statistical model, we ran a progressive series of simulations.  The tests were conducted as follows: 
 

1. We randomly distributed a number of simulated events among the possible categorical 
classifications, beginning with an average of 0.2 events per categorical classification. 

2. For each event, we randomly determined success or failure based on the probability of success for 
the categorical classification in which it occurred. 

3. We fed the resulting success/failure table into the automated statistical tool, which then generated 
a 'best' statistical model. 

4. We computed the error in the modeled probabilities, measured against the true probabilities.  We 
did the same for the probabilities based purely on the measured data.  Note that the model was 
able to provide probabilities even for categorical classifications where no test cases occurred, but 
such categorical classifications had to be discarded in this comparison. 

5. We increased the average number of test cases per categorical classification and repeated steps one 
through four. 

The results are shown in Figure 5 below.  They suggest that an average of at least two to three test cases 
should be gathered for each categorical classification.  Figure 5 also illustrates the decrease in error resulting 
from the use of automatically generated model probabilities rather than measured probabilities. 
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Figure 5. Error in probabilities as a function of sample size  

As mentioned above, Figure 5 only reflects measurements from those categorical classifications that 
contained simulated events.  Thus, this figure does not illustrate another significant advantage of modeled 
data, that it provides estimates for these untested categorical classifications.  To give some idea of the 
sparsity involved in these simulation runs, we include Figure 6 below, which shows the average 
percentage of categorical classifications for which we had at least one simulated event. 
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Figure 6. Percent of classifications with sample events as a function of average number of events 

5.  Conclusion.  Initial tests of our statistical data mining process appear promising.  We do not have 
reason to believe that these tests were atypical or that they provided an unfair advantage to the automated 
process, nevertheless, we would very much like to test the system in a broader range of applications.  We 
would also look to verify our initial indications that modeling is most accurate when there are, on 
average, at least twice as many events as categorical classification.  This minimum level will be necessary 
in determining when ordinal bins can be subdivided and when they must be consolidated and also in 
determining the number of distinct categories that can be analyzed without compromising requirements 
on the minimum average number of events per categorical classification. 
 
There are additional areas in which we would like to refine the tool.  Maximum likelihood (ML) 
estimators for loglinear model parameters can be obtained using numerical optimization techniques or 
using the Iterative Proportional Fitting method.  The latter method proved to be faster and more stable 
than Newton-Raphson, but was not an option for logistic regression models.  Because we are solving for 
such a large number of MLEs, we wish to implement the fastest, most stable methods for multivariate 
optimization, and so we hope to improve performance by incorporating additional optimization methods.  
In addition, there is an interesting application of combinatorial optimization that appears to be useful in 
circumventing difficulties inherent with zero-event bins, and we would like to explore in more detail the 
possibility of incorporating this application into the automated statistical modeling process. 
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